Chapter 14

Allergy & Hypersensitivity 過敏反應

1

陳炳宏副教授 KMU生物科技學系 第一教學大樓N1020/1023 (分機: 2676) bhchen@kmu.edu.tw http://allergy.kmu.edu.tw

Learning objectives

- Understand how IgE is produced during allergic reactions.
- Understand the effector mechanisms of allergic reaction.
- Understand the mechanisms underlying other hypersensitivity diseases.

Hypersensitivity

- an immune reaction to <u>innocuous antigens</u> that results in tissue injury and/or disease
 - □ directed against foreign antigens and damage is a consequence of inflammation
- Classified into 4 types (by Coombs and Gell)
- Distinguished based on
 - □ immune mechanisms involved, and
 - □ <u>types of antigen</u> recognized

Allergen

Definition:

- □ An antigen capable of causing allergy
- Can you define the following terms?
 - □Immunogen 免疫原
 - □ Antigen 抗原
 - □ Allergen 過敏原

Hypersensitivity types I-III

	Туре І	Type II		Type III		
Immune reactant	IgE	lg	IgG		lgG I	
Antigen	Soluble antigen	Cell- or matrix- associated antigen	Cell-surface receptor	Soluble antigen		
Effector mechanism	Mast-cell activation	Complement, FcR ⁺ cells (phagocytes, NK cells)	Antibody alters signaling	Complement, Phagocytes		
	Ag	platelets complement		immune complex blood vessel complement		
Example of hypersensitivity reaction	Allergic rhinitis, asthma, systemic anaphylaxis	Some drug allergies (eg, penicillin)	Chronic urticaria (antibody against FC∈R1α)	Serum sickness, Arthus reaction		

Figure 12-2 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Fig 14-1

Hypersensitivity type IV

	Type IV			
Immune reactant	T _H 1 cells	T _H 2 cells	CTL	
Antigen	Soluble antigen	Soluble antigen	Cell-associated antigen	
Effector mechanism	Macrophage activation	IgE production, Eosinophil activation, Mastocytosis	Cytotoxicity	
	IFN-γ T _H 1	IL-4 IL-5 Cytotoxins, inflammatory mediators	CTL ↓	
Example of hypersensitivity reaction	Contact dermatitis, tuberculin reaction	Chronic asthma, chronic allergic rhinitis	Contact dermatitis	

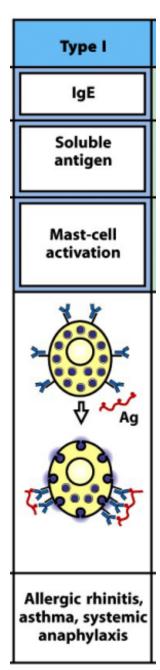

Fig 14-1

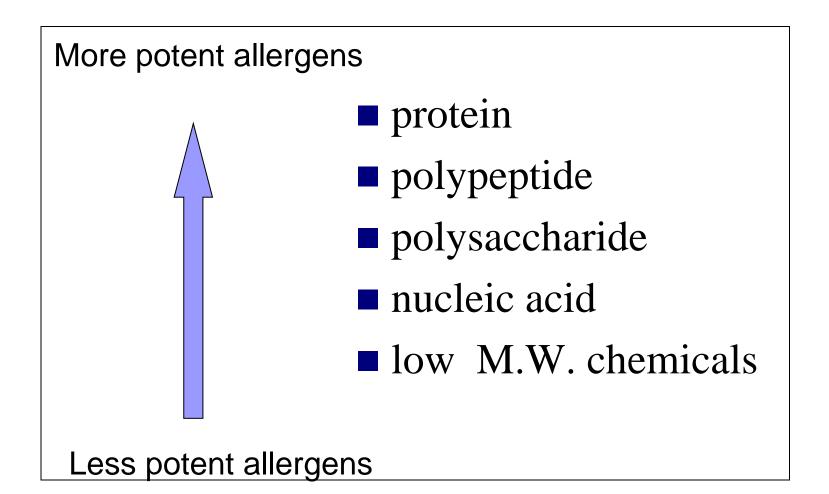
Figure 12-2 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Alternative names of hypersensitivity types

Type I □ Immediate/Atopic/Anaphylactic Type II □ Cytotoxic/Cytolytic Type III □ Immune complex/Arthus Type IV □ Delayed type/T-cell mediated

Type I Hypersensitivity

IgE-mediated allergic reactions					
Syndrome	Common allergens	Route of entry	Response		
Systemic anaphylaxis	Drugs Serum Venoms Peanuts	Intravenous (either directly or following oral absorption into the blood)	Edema Increased vascular permeability Tracheal occlusion Circulatory collapse Death		
Acute urticaria (wheal-and-flare)	Animal hair Insect bites Allergy testing	Through skin	Local increase in blood flow and vascular permeability		
Allergic rhinitis (hay fever)	Pollens (ragweed, timothy, birch) Dust-mite feces	Inhalation	Edema of nasal mucosa Irritation of nasal mucosa		
Asthma	Danders (cat) Pollens Dust-mite feces	Inhalation	Bronchial constriction Increased mucus production Airway inflammation		
Food allergy	Tree nuts Peanuts Shellfish Milk Eggs Fish	Oral	Vomiting Diarrhea Pruritis (itching) Urticaria (hives) Anaphylaxis (rarely)		


IgE-mediated reactions to extrinsic antigens

All IgE-mediated responses involve mast-cell degranulation!!

Fig 14-2

Allergens

- 1. Ags delivered (often) via mucosa surface, and at low dose.
- 2. Can selectively evoke Th2 cells that drive an IgE response

Common allergens

Pollen

- House dust mite
 - \Box e.g. protease Der p1 in the feces
- Animal dander
- Microorganisms
- Serum protein/Animal protein
- Antibiotics (penicillin, streptomycin)
 - □ e.g. some patients develop anti-penicillin IgE
- Insect poison

Characteristics of inhaled allergen Generally low in M.W. $\Box < 40 \text{ kD}$ Fig 14-5 ■ Water soluble Generally stable

It is not fully understood how or why, but these type of antigens tend to stimulate **IL-4 production**;

1. IL-4 production tends to lead to <u>more</u> <u>IL-4 production</u> (autocrine).

2. And IL-4 favors <u>Ig class switching to</u> IgE.

Features of inhaled allergens that may promote the priming of T _H 2 cells that drive IgE responses				
Protein, often with carbohydrate side chains	Only proteins induce T-cell responses			
Enzymatically active	Allergens are often proteases			
Low dose	Favors activation of IL-4- producing CD4 T cells			
Low molecular weight	Allergen can diffuse out of particle into mucus			
Highly soluble	Allergen can be readily eluted from particle			
Stable	Allergen can survive in desiccated particle			
Contains peptides that bind host MHC class II	Required for T-cell priming			

Route of allergen entry

Portal of entry

Skin

Blood


■ GI tract (gut)

 Respiratory tract

■ Eye (rare)

Dust mite (Dermatophagoides pteronyssimus)

Fecal pellets

Sensitization to an inhaled allergen (Der p1)

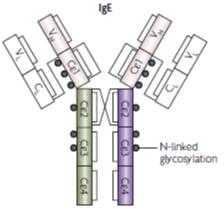

Fig 14-3

Figure 14.3 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Der p1 can cleave tight junction protein (e.g. occludin), allowing itself enter through the epithelial barrier to encounter APCs (DCs) down below → Th2 responses is activated.

Characteristics of IgE

- Located predominantly in <u>tissues</u>
 - □ Important for defense against muticellular parasites
- 2 known receptors
 - □ FceRI (mast cells, basophils, activated eosinophils)
 - $\Box \text{ FccRII/CD23 (B, DCs)} \rightarrow (-) \text{ regulator of IgE}$
- Heat labile
 - □ Fc binding destroyed by heating at 56°C for 30 min
 - □ antigen binding is not lost
- Short half-life
 - □ serum half-life is 2.5 days (c.f. IgG is 21 days)
 - \square when bound on mast cell \rightarrow 12 weeks

IgE and parasitic infection

- Eosinophils and IgE are important in the defense against helminth parasitic infection
 Skin
 - Epithelial surface of the airways (MALT)GI tract (GALT)
- Cells at the above anatomical sites are specialized to secrete predominantly cytokines driving TH2 responses

Two sets of specific signals for IgE production

- 1. Signals promoting Th0 \rightarrow Th2 differentiation
 - IL-10 (major)
 - IL-4, 5, 9, 13 (minor)
 - IL-2 (T-cell growth factor)
- 2. Signals promoting Ig class switch on B cells
 - a. 1st signal
 - IL-4 (major)
 - IL-5, 9, 10, 13 (minor)
 - b. 2nd signal
 - co-stimulatory signals (CD40L)
 - from either DCs or mast cells

Events leading to IgE class switching and massive IgE production

(1) IL-4/13 induce activation of JAK tyrosine kinases

Fig. 6-30 (7th ed.)

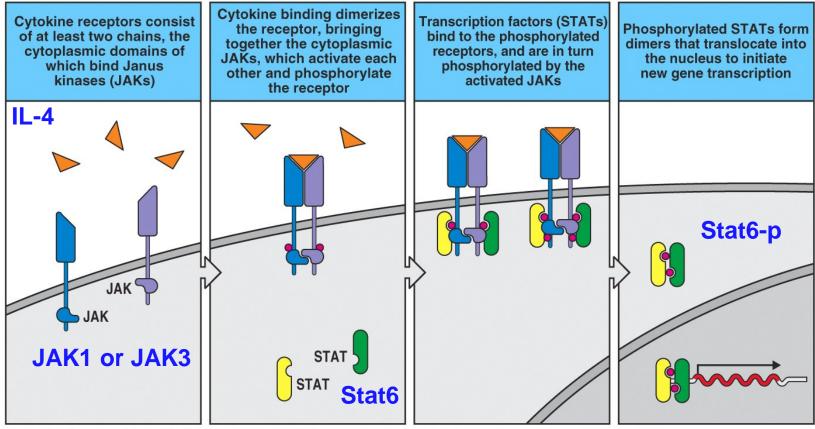


Figure 6-23 Immunobiology, 6/e. (© Garland Science 2005)

Ig switched to IgE 19

Events leading to IgE class switching and massive IgE production

(2) Mast cell activation causes amplification of IgE synthesis

Fig 14-4

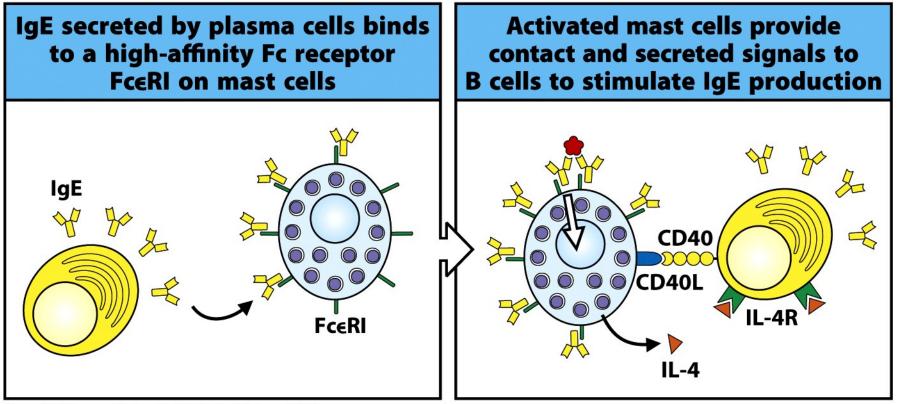
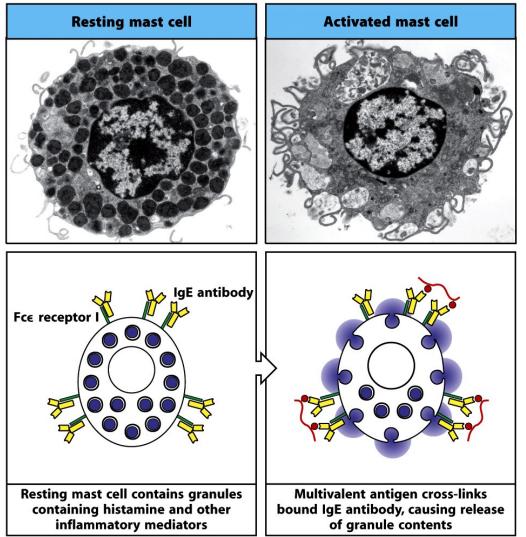



Figure 13-6 Immunobiology, 7ed. (© Garland Science 2008)

Mast cell degranulation by antigen (allergen) cross-linking of FceR-bound IgE

1. Sensitization phase

- Occurs when body first encounter allergen
- IgE produced and bound to mast cell

2. Activation phase

- Occurs when the same allergen encountered IgEbound mast cell
- Cross-linking
- Degranulation

Eosinophils and basophils may also participate

Figure 9-35 Immunobiology, 7ed. (© Garland Science 2008)

Atopy (特異性體質)

Definition:

- The increased trend seen in some individuals (atopics) to show exaggerated tendency to mount <u>IgE responses</u> to wide variety of <u>innocuous</u> <u>substances</u>
- Strong hereditary linkages
- Influenced by several genetic loci (Fig. 13-7)
- Mediated by a serum factor formally termed "reagin"
 - \Box Now known as IgE

Atopics (具特異性體質者)

- Individuals exhibiting predisposition to type I hypersensitivity
- Characteristics
 - □ Family history (genetically linked)
 - □ Raised seral IgE levels
 - □ Skin prick test (+)
 - □ However, not all atopics exhibit clinical diseases

Fig 14-7 . IL-3,4,5,9,13; GM-CSF genes . TIM proteins (Tim3/Tim-2 proteins inhibit Th1/Th2 cells, respectively) . IL-12 p40 subunit (promotes Th1 responses) 11q12-13 . Fc ϵ RI β subunit 6p21 . MHC-II genes X Y 2 3 5 8 18 19 20 21 22 6 7 9 10 5 16 Asthma **Atopic dermatitis Psoriasis** Autoimmune diseases

Figure 13-7 Immunobiology, 7ed. (© Garland Science 2008)

5q31-33

Candidate susceptibility genes for asthma Fig 14-8

Asthma susceptibility genes				
	Pattern recognition receptors: CD14, TLR2, TLR4, TLR6, TLR10, NOD1, NOD2			
	Immunoregulatory cytokines: <i>IL-10, TGFβ1</i>			
Genes triggering the immune response or directing CD4 T _H cell differentiation	Transcription factors: STAT3			
	Antigen presentation: HLA-DR, HLA-DQ, HLA-DP alleles			
	Prostaglandin receptor: <i>PDGER2</i>			
Genes regulating T _H 2 cell differentiation and effector afunction	GATA3, TBX21, IL-4, IL-13, IL4RA, FCER1B, IL-5, IL5RA, IL12B			
	Chemokines: CCL5, CCL11, CCL24, CCL26			
Conce ownward in onithalial calls	Antimicrobial peptides: DEFB1			
Genes expressed in epithelial cells	CC16			
	Epithelial cell barrier: SPINK5, FLG			
Genes identified by positional cloning ADAM33, DPP10, PHF11, GPRA, HLA-G, IRAKM, COL29A1				

				~							report	5	45
Gene	Chromosome	Function and pathway	Common variants		5	10	15	20	25	30	35	40	45
GSTMI	1p13.3	Environmental and oxidative stress — detoxification	+/null										
FLG	1q21.3	Epithelial barrier integrity	Arg510X, 2282del4										
IL10	1q31-q32	Immunoregulation	-1082A/G, -571C/A										
CTLA4	2q33	T-cell-response inhibition and immunoregulation	-318C/T, 49A/G										
IL13	5q31	T _H 2 effector functions	-1112C/T, Arg130Gln			_	_	_					
IL4	5q31.1	T _H 2 differentiation and IgE induction	-589C/T, +33C/T										
CD14	5q31.1	Innate immunity — microbial recognition	-1721G/A, -260C/T		_	_	_						
SPINK5	5q32	Epithelial serine protease inhibitor	Glu420Lys						_				
ADRB2	5q31-q32	Bronchial smooth-muscle relaxation	Arg16Gly, Gln27Glu										
HAVCR1	5q33.2	T-cell-response regulation — HAV receptor	5383 5397 del										
LTC45	5q35	Cysteinyl leukotriene biosynthesis — inflammation	-444Ā/C										
LTA	6p21.3	Inflammation	Ncol (intron 1)										
TNF	6p21.3	Inflammation	-308G/A, -857C/T										
HLA-DRB1	6p21	Antigen presentation	Multi-SNP alleles										
HLA-DQB1	6p21	Antigen presentation	Multi-SNP alleles		_								
HLA-DPB1	6p21	Antigen presentation	Multi-SNP alleles										
GPRA	7p14.3	Regulation of cell growth and neural mechanisms	Haplotypes										
NAT2	8p22	Detoxification of drugs and carcinogens	Slow acetylation SNPs										
FCERIB	11q13	High-affinity Fc receptor for IgE	lle181Leu, Gly237Glu										
CCI6	11q12.3-q13.1	Epithelium-derived anti-inflammatory protein	38A/G										
GSTPI	11q13	Environmental and oxidative stress — detoxification	lle105Val										
IL18	11q22.2-q22.3	Induction of IFNy and TNF	-656T/G, -137G/C										
STAT6	12q13	IL-4 and IL-13 signalling	2964G/A, (GT)n exon 1										
NOSI	12q24.2-q24.31	Nitric oxide synthesis — cell-cell communication	3391C/T, 5266C/T										
CMA1	14q11.2	Mast-cell chymotryptic serine protease	BstX1,1903G/A										
IL4R	16p12.1-p12.2	α-chain of the IL-4 and IL-13 receptors	lle50Val, Glu551Arg										
Call	17q21.1-q21.2	Epithelium-derived eosinophil chemoattractant	Ala23Thr, 1328G/A										
COL5	17q11.2-q12	Monocyte, T-cell and eosinophil chemoattractant	-403A/G, -28C/G		_								
ACE	17q23.3	Inactivation of inflammatory mediators	In/del										
TBXA2R	19p13.3	Smooth-muscle contraction, inflammation	924T/C, 795T/C										
TGFB1	19q13.1	Immunoregulation, cell proliferation	-509C/T										
ADAM33	20p13	Cell-cell and cell-matrix interactions	Multiple SNPs										
GSTTI	22q11.23	Environmental and oxidative stress — detoxification	A/null										

(給同學們參考用)

Nature Reviews Immunology 2008. 8(3)

"Fig 14-9 "Hygiene hypothesis"

 Both inherited and environmental factors contribute to the likelihood of developing allergic diseases

Th1 responsiveness (non-atopic)

- □ Fewer in susceptible genes
- More exposures to some infectious agents during in childhood
 - In a more unhygienic environment

Th2 responsiveness (atopic)

- □ More in susceptible genes
- Less exposures to infectious agent in childhood
 - In a more hygienic environment

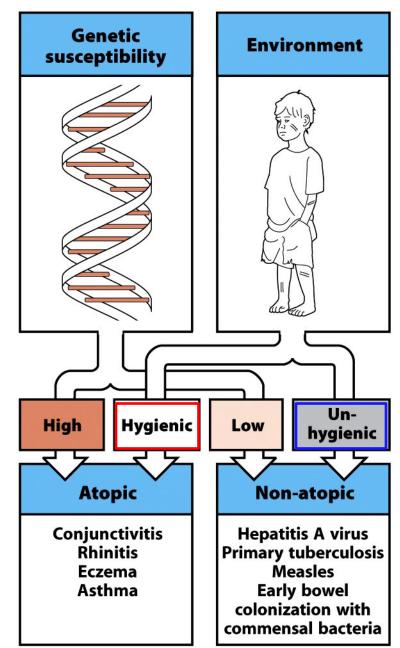
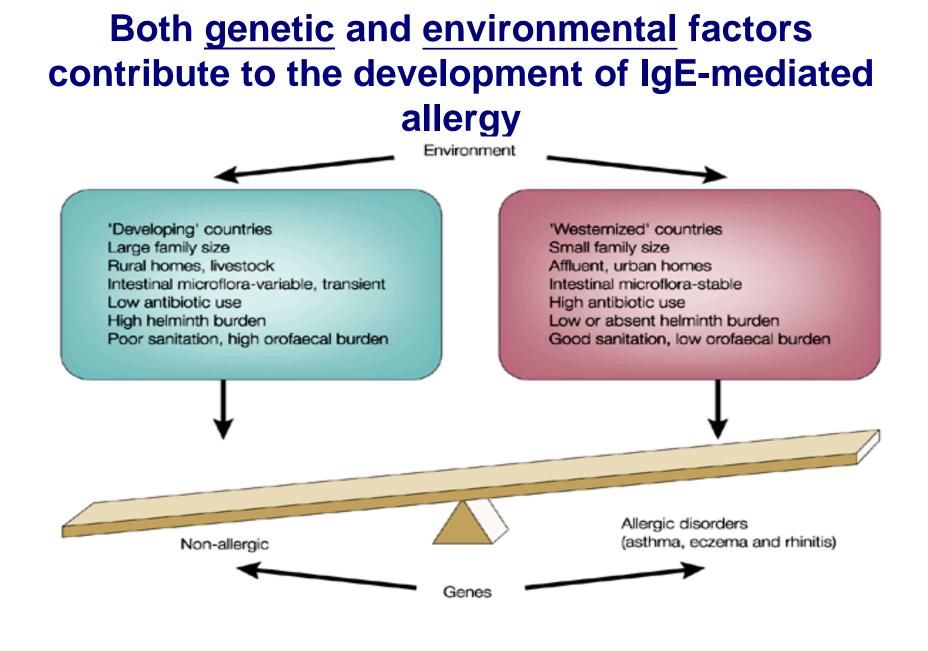



Figure 13-9 Immunobiology, 7ed. (© Garland Science 2008)

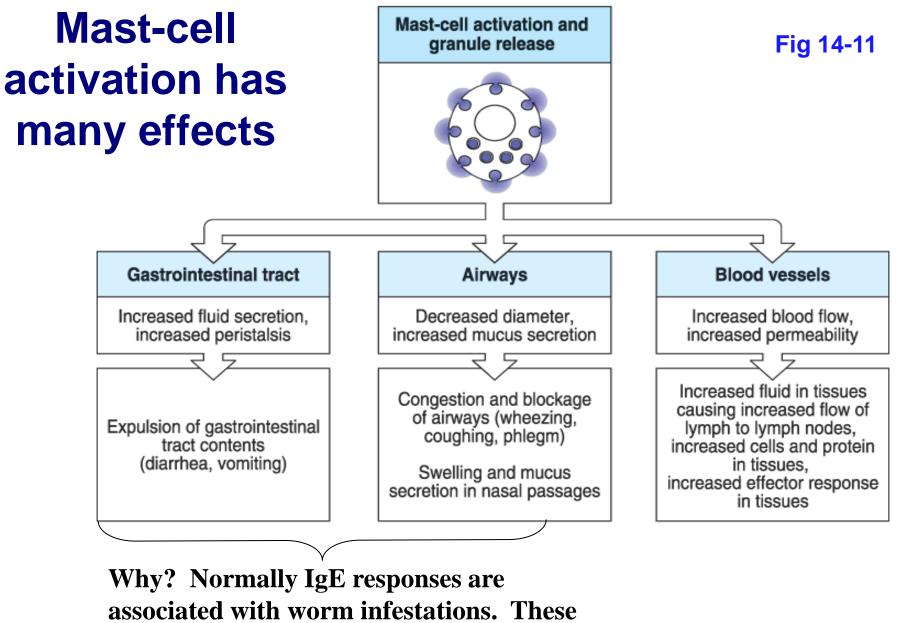

Environmental factors determining tendency for atopic allergic diseases

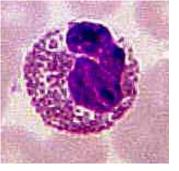
Fig 14-9

- Early exposure to ubiquitous microorganisms
- Helminth infection
- Hepatitis A virus infection
- Composition of gut commensal microbiota

Effector mechanisms in allergic reaction

responses help evacuate the places where the worms often live.

Molecules released by activated mast cells Fig 14-11


Pre-formed and stored in granules

Class of product	Examples	Biological effects		
Enzyme	Tryptase, chymase, cathepsin G, carboxypeptidase	Remodel connective tissue matrix		
Toxic mediator	Histamine, heparin	Toxic to parasites Increase vascular permeability Cause smooth muscle contraction		

Molecules released by activated mast cells Fig 14-11

Newly synthesized upon m activation

	IL-4, IL-13	Stimulate and amplify T _H 2-cell response			
Cytokine	IL-3, IL-5, GM-CSF	Promote eosinophil production and activation			
	TNF- α (some stored preformed in granules)	s) Promotes inflammation, stimulates cytokine production by many cell types, activates endothelium			
Chemokine	CCL3	Attracts monocytes, macrophages, and neutrophils			
Lipid mediator	Prostaglandins D ₂ , E ₂ Leukotrienes B4, C4	Cause smooth muscle contraction Increase vascular permeability Stimulate mucus secretion			
	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and platelets			

Eosinophils

Granulocytic leukocytes

- Granules harbor arginine-rich basic proteins
 - easily stained with acidic dye eosin
- Most are found in tissues (connective tissues, interconnection with IgE)
 - □ Respiratory tract

□ GI tract

Will express FccRI receptor when activated

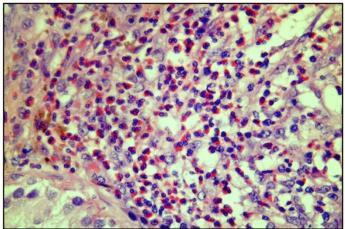


Figure 12-13 Immunobiology, 6/e. (© Garland Science 2005

Molecules released by activated eosinophils

Pre-formed mediators

Class of product	Examples	Biological effects				
Enzyme	Eosinophil peroxidase	Toxic to targets by catalyzing halogenation Triggers histamine release from mast cells				
	Eosinophil collagenase	Remodels connective tissue matrix				
	Major basic protein	Toxic to parasites and mammalian cells Triggers histamine release from mast cells				
Toxic protein	Eosinophil cationic protein	Toxic to parasites Neurotoxin				
	Eosinophil-derived neurotoxin	Neurotoxin				

Figure 12-14 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Fig 14-12

Molecules released by activated eosinophils

Newly-synthesized mediators Fig 14-12

Class of product	Examples	Biological effects				
Cytokine	IL-3, IL-5, GM-CSF	Amplify eosinophil production by bone mar Cause eosinophil activation				
Chemokine	CXCL8 (IL-8)	Promotes influx of leukocytes				
Lipid mediator	Leukotrienes C4, D4, E4	Cause smooth muscle contraction Increase vascular permeability Increase mucus secretion				
	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and platelets				

Figure 12-14 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Chemical mediator release

- Immediate phase \rightarrow 2-3 min. ~ 6 hr
 - □ Histamine, prostaglandins
 - □ Eosinophil chemotactic facter (ECF)
 - □ Neutrophil chemotactic factor (NCF) etc.
- Late phase \rightarrow > 6-24 hr
 - □ SRS-A (e.g. Leukotrienes)
 - □ Platelet-activating factor (PAF)
 - Chemokines/Cytokines (e.g. IL-3, IL-5, GM-CSF)

Fig 14-13

Immediate phase

- -Wheal-and-flare (喇叭狀局部膨疹) -Mediators released
- -1st contraction of smooth muscle

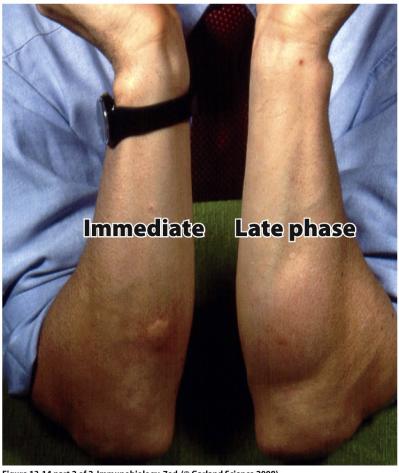


Figure 13-14 part 2 of 2 Immunobiology, 7ed. (© Garland Science 2008)

Late phase

- -Induction of more mediators
- -Recruitment of eosino./Th2 cells
- -2nd contraction of smooth muscle
- -Edema (due to vasodilation)
- -Smooth muscle hypertrophy/hyperplasia

Immediate vs late-phase reaction Fig 14-13

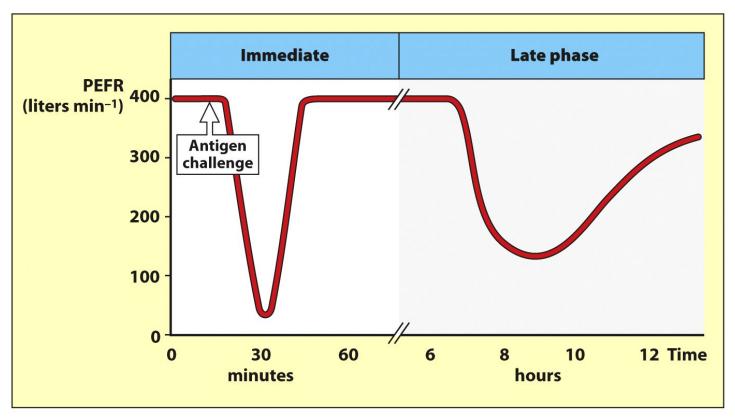
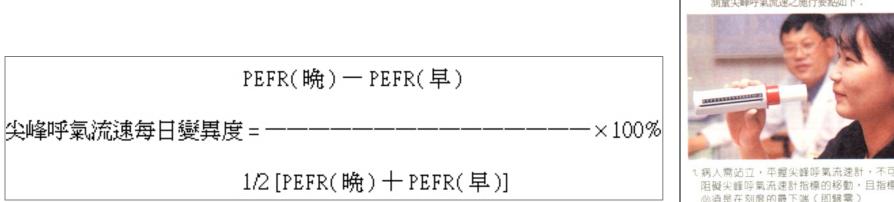



Figure 14.13 part 1 of 2 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Peak expiratory flow rate (用力呼氣尖峰流速) -可以客觀地評估氣喘患者氣流阻塞程度 - 以**尖峰吐氣流量計(AsthmaMentor)**測量之

尖峰吐氣流量計(AsthmaMentor)

■ 兒童的尖峰呼氣流速每日變異度若 大於20%,即可診斷為氣喘。

測量尖峰呼氣流速之施行要點如下:

醫由於

峰 呼 對氣

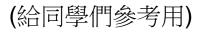
> 人速 示 的 1 結

> > 病

按

違 病

幫助自己的一種方法


標的移動,且指標

力深吸氣到全肺量 緊含吹□,然後盡最大速度用力瞬間儘速

記録結果 步驟 1 至 2 ,兩次,選三次結果中之 由重覆 最高值記錄下來,並與預估值(或最佳值)做比較

Target organs affected by mast-cell activation

- Smooth muscle
 - \Box Contraction
- Blood vessels
 - □ Increased vascular permeability → Dilation (擴張)
- Mucosal gland
 - □ Increased mucus secretion
- Leukocytes
 - Increased influx into surrounding tissues
 - Termed 'infiltration'

Examples of diseases

- Allergic rhinitis 過敏性鼻炎 □ Hay fever
- Urticaria 蕁麻疹;風疹塊
 - □ Hives, disseminated wheal-and-flare
- Eczema 溼疹
 - □ Atopic dermatitis
- Food allergy 食物過敏
- Bronchial asthma 氣喘
- Anaphylactic shock (anaphylaxis) 系統性休克

Factors determining consequences of IgE-mediated reactions

Dose of allergen
Route of allergen entry
Quantity of IgE present

The site of mast cell activation determines the clinical effects

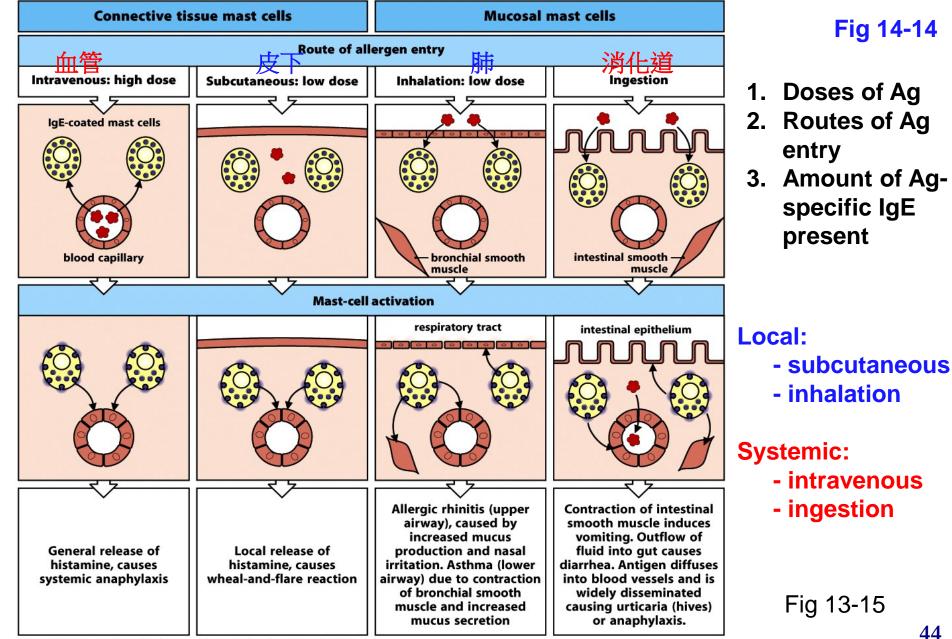


Figure 13-15 Immunobiology, 7ed. (© Garland Science 2008)

Acute response in allergic asthma can lead to chronic inflammation of the airways Fig 14-15

T_H2-mediated chronic airway obstruction

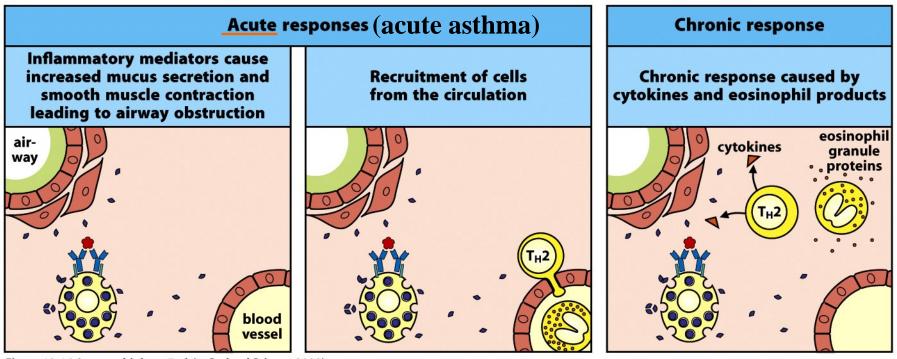
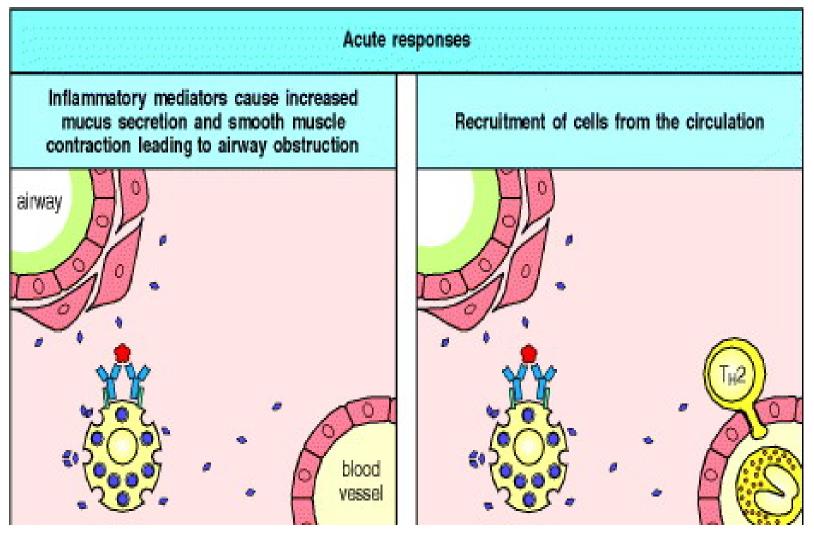
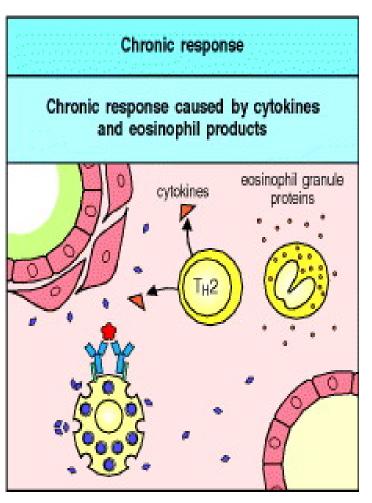



Figure 13-16 Immunobiology, 7ed. (© Garland Science 2008) Type I hypersensitivity because IgE-mediated

Type IV hypersensitivity because T_H^2 involvement

Acute asthma

(activation of submucosal mast cells in the airways)



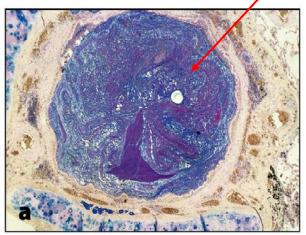

Massive cytokine release and tissue damage lead to chronic asthma!!

Fig 14-15

Chronic asthma (continuous inflammation of the airways) Fig 14-16

Fig 14-15

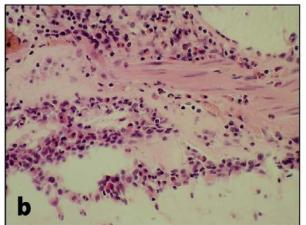


Figure 13-17 Immunobiology, 7ed. (© Garland Science 2008)

Complete airway obstruction

Blockade of airway due to mucosal secretion
Infiltrates of TH2 lymphocytes, eosinophils, neutrophils,...etc.

```
Fig 13-17
```

Risk factors for development of food allergy

Fig 14-18

Risk factors for the development of food allergy

Immature mucosal immune system

Early introduction of solid food

Hereditary increase in mucosal permeability

IgA deficiency or delayed IgA production

Inadequate challenge of the intestinal immune system with commensal flora

Genetically determined bias toward a T_H2 environment

Polymorphisms of T_H2 cytokine or IgE receptor genes

Impaired enteric nervous system

Immune alterations (e.g., low levels of TGF-β)

Gastrointestinal infections

How can allergic diseases be treated?

Fig 14-19

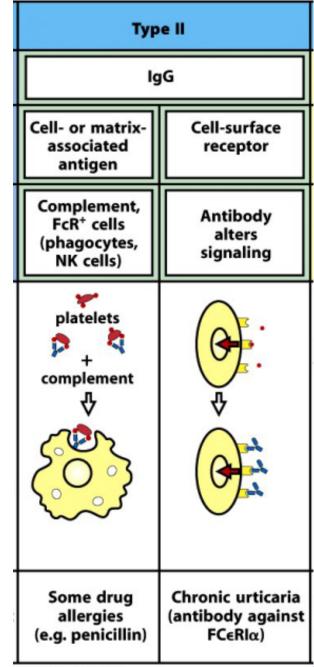

Treatments for allergic disease				
Target step	Mechanism of treatment	Specific approach		
In clinical use				
Mediator action	Inhibit effects of mediators on specific receptors Inhibit synthesis of specific mediators	Antihistamines, β-blockers Lipoxygenase inhibitors		
Chronic inflammatory reactions	General anti-inflammatory effects	Corticosteroids		
T _H 2 response	Induction of regulatory T cells	Desensitization therapy by injections of specific antigen		
IgE binding to mast cell	Bind to IgE Fc region and prevent IgE binding to Fc receptors on mast cells	Anti-IgE antibodies (omalizumab)		


Figure 14.19 part 1 of 2 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

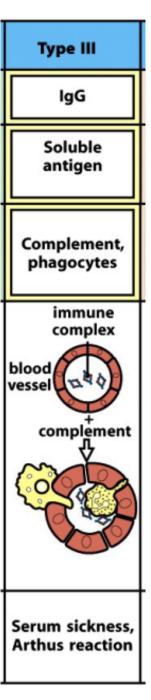
How can allergic diseases be treated?

Treatments for allergic disease				
Target step	Mechanism of treatment	Specific approach		
Proposed or under investigation				
T _H 2 activation	Induction of regulatory T cells	Injection of specific antigen peptides Administration of cytokines, e.g., IFN-γ, IL-10, IL-12, TGF-β Use of adjuvants such as CpG oligodeoxynucleotides to stimulate T _H 1 response		
Activation of B cell to produce IgE	Block co-stimulation Inhibit T _H 2 cytokines	Inhibit CD40L Inhibit IL-4 or IL-13		
Mast-cell activation	Inhibit effects of IgE binding to mast cell	Blockade of IgE receptor		
Eosinophil-dependent inflammation	Block cytokine and chemokine receptors that mediate eosinophil recruitment and activation	Inhibit IL-5 Block CCR3		

Type II Hypersensitivity

Type II hypersensitivity

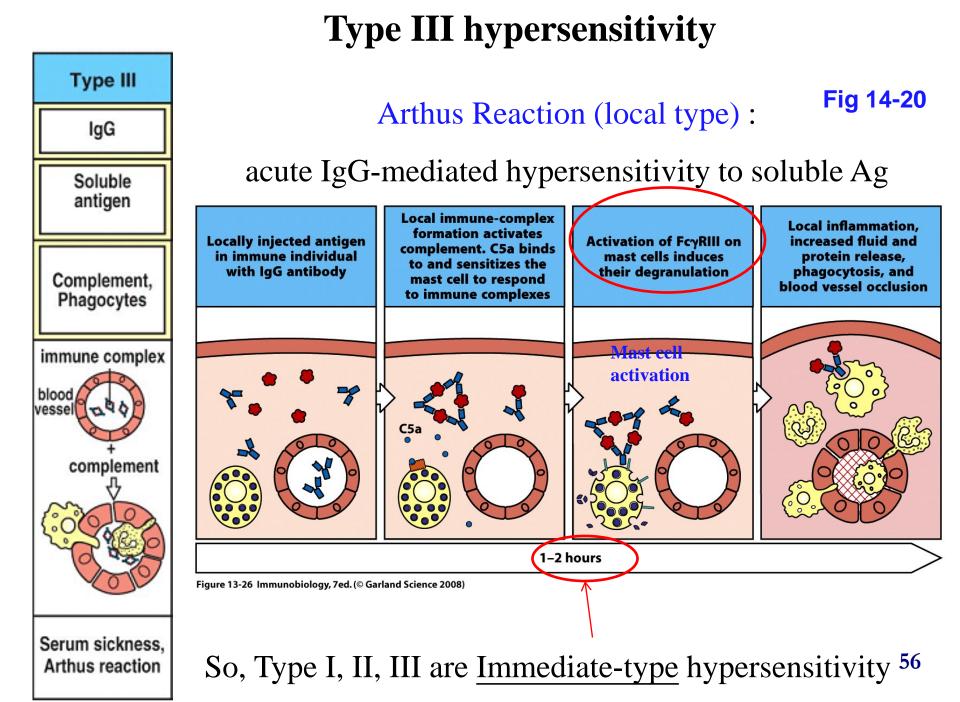
- 1. Rare
- 2. IgG-mediated anti-cell-associated antigen response


Immune response to certain drugs (e.g., penicillin) where drug binds to cell surface and antibody causes <u>removal of</u> <u>the cells</u> (usually by macrophages).

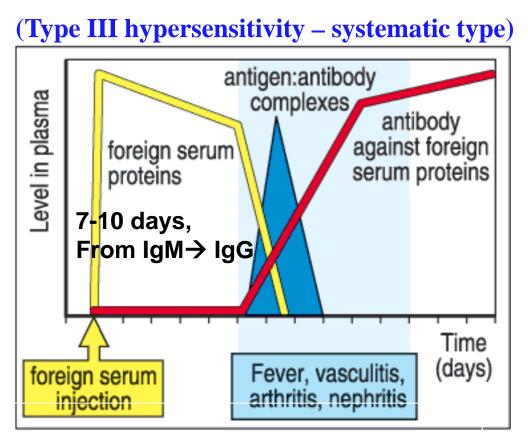
Type II hypersensitivity

- Mediated by binding of IgG to cell or tissue matrix Ag
- Occurs when
 - \Box foreign cells (such as blood) are transfused, or
 - □ following administration of drugs such as penicillin which bind to self-proteins on RBCs or platelets
 - Penicillin acts as <u>hapten</u> (to change the antigenic structure of cells)
 - Causes <u>hemolytic anemia</u> or <u>thrombocytopenia</u>
- Mechanisms of the clearance of the cells
 □ complement-mediated destruction, or
 □ FcγR-mediated clearance by phagocytic cells

Type III Hypersensitivity



Type III Hypersensitivity


- Arises with soluble Ags
- Deposition of Ab:Ag aggregates (immune complexes; ICs) leads to tissue damage

Two types

- \Box local (subcutaneous), and
- □ systemic (injection, via blood stream)
- A local reaction can occur following subcutaneous injection or inhalation of antigens to which <u>the individual already has</u> <u>IgG antibodies</u>

Serum sickness (IgG immune complexes in the <u>blood</u>)

1. Symptoms are <u>delayed</u> while a primary immune response develops.

Fig 14-21

2. Symptoms arise from the activation of complement (mainly) and activation of other cells (e.g. mast cells).

3. Symptoms include fever, rash, arthritis and glomerulonephritis.

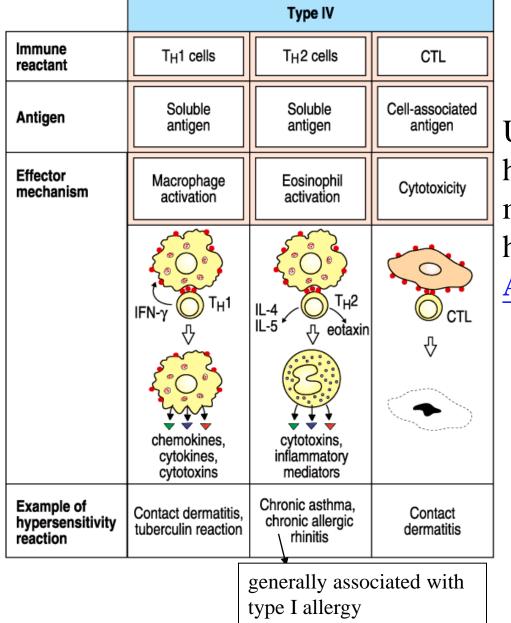
4. Usually, serum sickness is selflimiting.

Farmer's lung

- Repeated exposure to <u>high concentrations</u> of inhaled hay dust or mold spores can lead to <u>IgG antibody production</u>
- Immune complexes can form in alveolar wall of lung
- Accumulation of fluid, protein, and cells can impair gas exchange

Duration of symptoms depends on the ability of the system to clear the Ag

In <u>serum sickness</u>


the symptoms are self-limited due to clearance of the antigen

Chronic 'serum sickness'

- □ some chronic bacterial infection
 - e.g. sub-acute bacterial endocarditis (infection of heart valve)
- □ Chronic viral infections (e.g. HBV)
- Persistent presence of foreign Ags, but system fails to clear them out efficiently!!
- In chronic HBV infection, ICs can lead to a chronic vasculitis
 - $\hfill\square$ To cause renal disease and nerve damage

Type IV Hypersensitivity or Delayed type hypersensitivity (DTH)

Type IV hypersensitivity ("delayed type hypersensitivity")

Unlike the previous three hypersensitivity types (Abmediated), type IV hypersensitivity is mediated by Ag-specific effector T cells

Delayed-type hypersensitivity is mediated by antigen-specific T cells

Fig 14-22

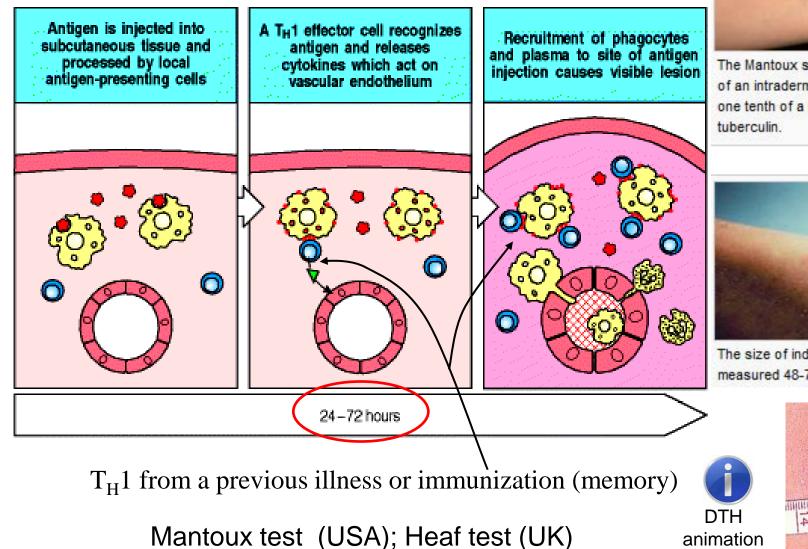

	Type IV hypersensitivity reactions are mediated by antigen-specific effector T cells			
	Syndrome	Antigen	Consequence	
(1)	Delayed-type hypersensitivity Th1	Proteins: Insect venom Mycobacterial proteins (tuberculin, lepromin)	Local skin swelling: Erythema Induration Cellular infiltrate Dermatitis	
(2)	Contact hypersensitivity Th1, M, CTL	Haptens: Pentadecacatechol (poison ivy) DNFB Small metal ions: Nickel Chromate	Local epidermal reaction: Erythema Cellular infiltrate Vesicles Intraepidermal abscesses	
	Gluten-sensitiveenteropathy (celiac disease)	Gliadin	Villous atrophy in small bowel Malabsorption	

Figure 12-24 Immunobiology, 6/e. (© Garland Science 2005)

Tuberculin test

- Prototypic delayed type hypersensitivity (DTH) reaction
- Performed to determine whether an individual has been previously infected with <u>Mycobacterium</u> <u>tuberculosis</u>
- Small amount of <u>tuberculin</u> (mixture of peptides and carbohydrates derived from *M. tuberculosis*) injected subcutaneously
- Individuals previously exposed or immunized with BCG (attenuated form of *M. tuberculosis*) develop local Th1-mediated inflammatory reaction in 24-72 hrs

Delayed type hypersensitivity (DTH) Fig 14-23

The Mantoux skin test consists 51 of an intradermal injection of exactly one tenth of a milliliter (mL) of PPD

The size of induration is measured 48-72 hours later.

64

5

Chemokines and cytokines released by

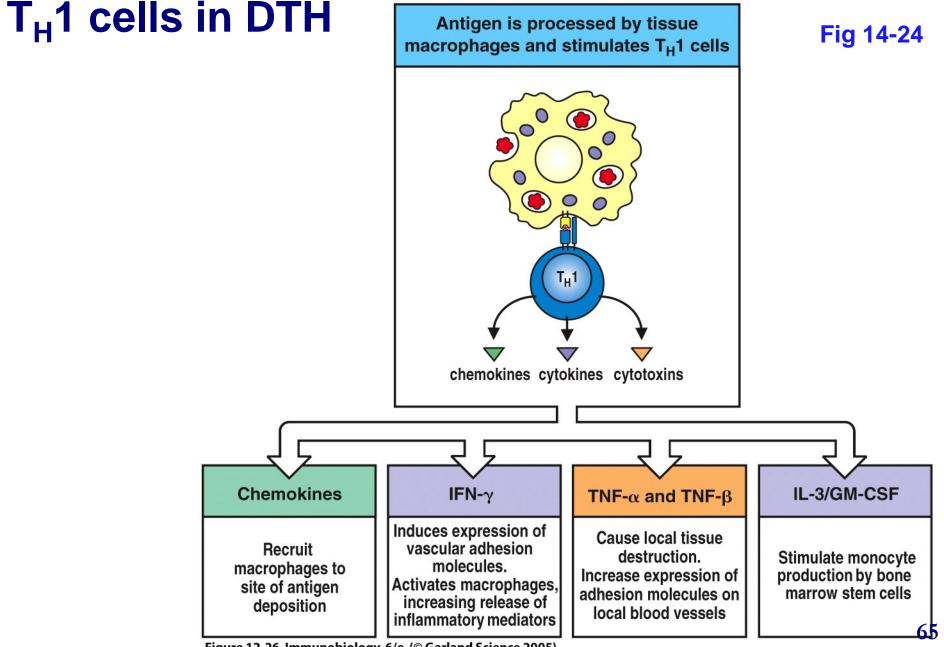
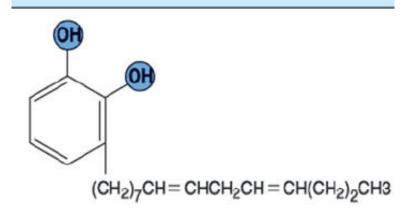


Figure 12-26 Immunobiology, 6/e. (© Garland Science 2005)

Contact sensitivity

- Reactions triggered by <u>self</u> <u>proteins</u> modified by small organic molecules or metal ions
- Damage mediated by
 - \Box T_H1 cells and macrophages they activate; or
 - direct action of antigen-specific cytotoxic CD8+ T cells
- Require initial sensitizing exposure and re-exposure
- Most frequent reaction is poison ivy (毒長春藤)


Type IV Hypersensitivity (poison ivy contact) T cell response to

pentadecacatechol in the leaf

- □ small, highly reactive chemical
- Penetrates outer layers of skin and binds to proteins on the surface of skin cells
 - Ag can persist in the skin for days
- First contact the individual becomes sensitized
- Upon <u>second exposure</u>, DTH manifests!!

Pentadecacatechol

Chemical formula of causative agent from poison ivy

Mechanism of poison ivy contact sensitivity Fig 14-25

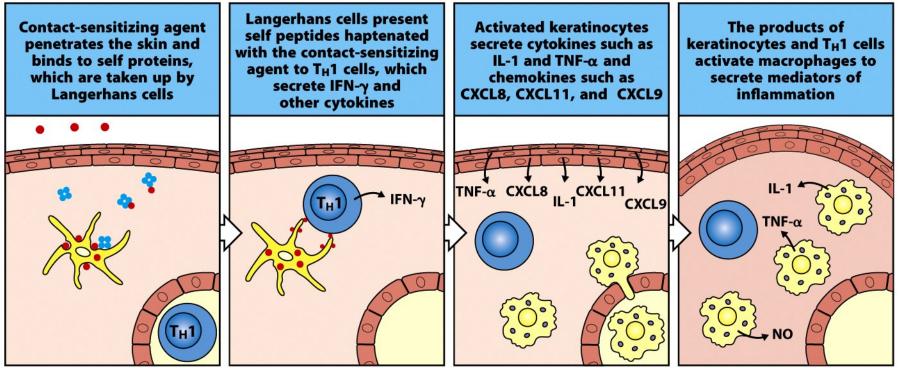


Figure 13-31 Immunobiology, 7ed. (© Garland Science 2008)

A <u>contact-sensitizing agent</u> is usually a small molecule that can:

- 1. penetrates the skin, and
- 2. binds to self-proteins, making them "look" like foreign; then
- 3. be recognized by underlying APCs (e.g. Langerhans cells)

Contact sensitivity – immune mechanisms leading to tissue damage

Tissue damage mediated by

□ <u>cytokines</u> and <u>direct cell-cell interactions</u>

- Enzymes released by activated Th1 cells degrade the proteins of the extracellular matrix that hold the skin together leading to <u>blistering</u>
- Lipid-like haptens can diffuse through the plasma membrane of cells into the cytosol and bind to intracellular proteins eliciting a <u>CD8+ T cell response</u>
- CD8+ T cells can directly lyse target cells

Treatment for contact sensitivity

- Corticosteroids (steroids) 腎上腺皮質醣類固醇
 Inhibit the inflammatory response by inhibiting production of cytokines and chemokines
- Sensitivity is life-long once acquired and contact should be avoided

新聞首頁 > 健康 > 慢性疾病 > 中庸 🖂 寄給朋友 | 🖺 友善列印 | 字級設定: 小 🕩 📩 🖻 🛛 🖪 📁 🛛 分享 🔻 美研究:過敏的人較不易得癌症 (C) 中國新聞新 更新日期: 2010/05/24 14:05 姜國一項研究發現,有過敏症狀的人比較不容易得癌症፟፟፟፟፟፟፟፟፟፟。 徳州科技大學研究發現,有氣喘◎症狀的婦女得卵巢癌的比 例比一般婦女少三成。對空氣裡懸浮物質過敏的孩子得血癌 的比例即比一般孩子少四成。 哈佛大學的船就也發現,氣喘、濕疹、花粉症等過敏症狀的 患者比較不會得腦瘤。德州科大傳染病學家穆拉說,過敏可 以啟動體内免疫系統,增強對疾病的抵抗力,所以,過敏的 人反倒不容易得癌症。

Summary

- Hypersensitivity can be classified into 4 categories.
- Most allergies involve the production of IgE antibody against common environmental allergens.
- IgG and antigen-specific effector T cells also contribute to hypersensitivity to other antigens.

End of Chapter

版權聲明:

- 本講義所使用之圖片皆由出版商提供或是由公開之網路網頁直接下載使用,僅供授課者上課 解說與學生課後複習之教育用圖,禁止任何其他商業行為的複製與傳佈。
- 2. 由網路下載的圖片已盡可能提供原始連結網頁(請直接點選該圖檔)。
- 3. 本講義之文字或圖片內容若有侵權之虞,歡迎告知授課者,將立即修正相關內容。